Biophysical Chemistry II (iMOS)

<table>
<thead>
<tr>
<th>Module</th>
<th>Credits</th>
<th>Workload</th>
<th>Term</th>
<th>Frequency</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 EC</td>
<td>5 CP</td>
<td>150 h</td>
<td>1. Sem.</td>
<td>WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses</th>
<th>Contact hours</th>
<th>Self-Study</th>
<th>Group size</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Lectures</td>
<td>a) 2 SWS</td>
<td>90 h</td>
<td>30 Students</td>
</tr>
<tr>
<td>b) Exercises</td>
<td>b) 1 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Seminar</td>
<td>c) 1 SWS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
Knowledge in basic Physical Chemistry.

Learning outcomes
After successful completion of the module/course, students will be able to:

- Acquire advanced knowledge in experimental methods in the investigation of dynamics and thermodynamics of proteins and membranes, and on protein reaction and function based on selected examples
- Understand their applications, advantages, and disadvantages of the methods
- Analyze and screen relevant literatures independently
- Develop presentation skills in front of an audience
- Utilize digital techniques to prepare and conduct a presentation

Content
Advanced Biophysical techniques:

- Microcalorimetry in protein characterization
- Fluorescence-based methods in protein interactions
- Advanced fluorescence microscopy
- Fourier transform spectroscopy
- Attenuated total reflection (ATR) spectroscopy
- Vibrational spectroscopy in biomolecular solvation
- Scanning probe microscopy (SPM) in biochemistry

Teaching methods
Lecture (2 SWS, 30 h), Exercise (1 SWS, 15 h), Seminar (1 SWS, 15 h).

Mode of assessment
Participation in all seminars and presentation about an assigned publication. Written exam of 60 mins.

Requirement for the award of credit points
Pass both parts: presentation (50%) and written exam (50%).

Module applicability

Weight of the mark for the final score
Weighted according to CPs.

Module coordinator and lecturer(s)
Lecturers from Physical Chemistry departments.

Further information